Antinociceptive and pharmacological effects of metanicotine, a selective nicotinic agonist.

نویسندگان

  • M I Damaj
  • W Glassco
  • M D Aceto
  • B R Martin
چکیده

Metanicotine [N-methyl-4-(3-pyridinyl)-3-butene-1-amine], a novel neuronal nicotinic agonist, was found to bind with high affinity (K(i) = 24 nM) to rat brain [(3)H]nicotine binding sites and it generalized to nicotine in a dose-dependent manner in the drug discrimination procedure. Metanicotine produced significant antinociceptive effects in mice and rats subjected to either acute thermal (tail-flick), mechanical (paw-pressure), chemical (para-phenylquinone), persistent (Formalin), and chronic (arthritis) pain stimuli. Metanicotine was about 5-fold less potent than nicotine in the tail-flick test after s.c administration, but slightly more potent after central administration. Its duration of action was longer than that of nicotine. Nicotinic antagonists, mecamylamine and dihydro-beta-erythroidine, blocked metanicotine-induced antinociception in the different pain models. However, the antinociceptive effect was not affected by pretreatment with either naloxone or by atropine, confirming that metanicotine exerts its antinociceptive effect via nicotinic rather than either opioid or muscarinic mechanisms. In contrast to nicotine, antinociceptive effects of metanicotine were observed at doses that had virtually no effect on spontaneous activity and body temperature in mice. These data indicate that metanicotine is a centrally acting neuronal nicotinic agonist with preferential antinociceptive effects in animals. Thus, metanicotine and related nicotinic agonists may have great potential for development as a new class of analgesics.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Analgesic action of nicotine on tibial nerve transection (TNT)-induced mechanical allodynia through enhancement of the glycinergic inhibitory system in spinal cord.

The activation of cholinergic pathways by nicotine elicits various physiological and pharmacological effects in mammals. For example, the stimulation of nicotinic acetylcholine receptors (nAChRs) leads to an antinociceptive effect. However, it remains to be elucidated which subtypes of nAChR are involved in the antinociceptive effect of nicotine on nerve injury-induced allodynia and the underly...

متن کامل

Nicotinic acetylcholine receptor regulation of spinal norepinephrine release.

BACKGROUND Neuronal nicotinic acetylcholine receptor (nAChR) agonists produce antinociception in animals. nAChRs exist almost exclusively on presynaptic terminals in the central nervous system and stimulate neurotransmitter release. This study tested whether nAChR agonists stimulate spinal release of the neurotransmitter norepinephrine either by direct actions on noradrenergic terminals or indi...

متن کامل

Secondary Ammonium Agonists Make Dual Cation-π Interactions in α4β2 Nicotinic Receptors

A cation-π interaction between the ammonium group of an agonist and a conserved tryptophan termed TrpB is a near universal feature of agonist binding to nicotinic acetylcholine receptors (nAChRs). TrpB is one of five residues that form the aromatic box of the agonist binding site, and for the prototype agonists ACh and nicotine, only TrpB makes a functional cation-π interaction. We report that,...

متن کامل

The effects of oxotremorine, epibatidine, atropine, mecamylamine and naloxone in the tail-flick, hot-plate, and formalin tests in the naked mole-rat (Heterocephalus glaber).

The naked mole-rat (Heterocephalus glaber) is a promising animal model for the study of pain mechanisms, therefore a thorough characterization of this species is essential. The aim of the present study was to establish the naked mole-rat as a model for studying the cholinergic receptor system in antinociception by investigating the involvement of muscarinic, nicotinic and opioid receptors in no...

متن کامل

Nicotinic modulation of descending pain control circuitry.

Along with the well-known rewarding effects, activation of nicotinic acetylcholine receptors (nAChRs) can also relieve pain, and some nicotinic agonists have analgesic efficacy similar to opioids. A major target of analgesic drugs is the descending pain modulatory pathway, including the ventrolateral periaqueductal gray (vlPAG) and the rostral ventromedial medulla (RVM). Although activating nAC...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of pharmacology and experimental therapeutics

دوره 291 1  شماره 

صفحات  -

تاریخ انتشار 1999